34号油价预测分析表最新-34号油价预测分析表

第一步,看阳柱阴柱。 阳柱代表趋势方向,阳线一般是红色,表示将继续上涨,阴线一般是绿色,表示将继续下跌。以阳线为例,在经过一段时间的多空拼搏,收盘高于开盘表明多头占据上风,根据牛顿力学定理,在没有外力作用下价格仍将按原有方向与速度运行,因此阳线预示下一阶段仍将继续上涨,最起码能保证下一阶段初期能惯性上冲

第二步,看影线 影线代表转折信号,向一个方向的影线越长,越不利于原油向这个方向变动,即上影线越长,越不利于油价上涨,下影线越长,越不利于油价下跌。以上影线为例,在经过一段时间多空斗争之后,多头终于晚节不保败下阵来,一朝被蛇咬,十年怕井绳,不论K线是阴还是阳,上影线部分已构成下一阶段的上档阻力,油价向下调整的概率居大

第三步,看实体 实体大小代表内在动力,实体越大,现货原油价格上涨或下跌的趋势越是明显,反之趋势则不明显。以阳线为例,其实体就是收盘高于开盘的那部分,阳线实体越大说明了上涨的动力越足,就如质量越大与速度越快的物体,其惯性冲力也越大的物理学原理,阳线实体越大代表其内在上涨动力也越大,其油价上涨的动力将大于实体小的阳线。

全球石油价格多维分析

 不少人用颤抖的手

 打开了这篇推文

 是的

 油价继续涨!

 本年度的第11次油价调整

 将在周二(6月14日)晚24时进行

 截至10日是调价周期内的

 第8个工作日

 在此调整区间内

 国际油价不断刷新新高

 预测6月14日24时油价上调320元/吨左右,折算为上调0.25元/升左右,按一箱50升92号汽油计算,加满一箱油,将多花13元左右。

 事实上,在6月14日调整前,今年以来国内已经历了10次成品油价格调整,呈现出?9涨1跌?的趋势,国内汽、柴油每吨已累计分别上涨了2330元和2245元,这也意味着,一辆50升油箱的私家车目前加满一箱油要比年初多花93元。

 这也意味着95号汽油离10元关口越来越近了。业内分析认为,如果在本轮国内剩余的计价周期内,国际油价仍不能出现大幅下跌的趋势,本轮国内油价将继续大概率上调,也将成为年内的第10次上涨,国内95号汽油油价或将进入?十元?时代。

 业内分析认为

 如果在本轮国内剩余的计价周期内

 国际油价仍不能出现大幅下跌的趋势

 本轮国内油价将继续大概率上调

 也将成为年内的第10次上涨

 且国内95号汽油油价

 或将进入?十元?时代

 今年以来国内已经历了

 10次成品油价格调整

 呈现出?9涨1跌?的趋势

 

 国际油价高位运行会持续多久?

 在林伯强看来,国际局势缓解,油价才能下降,不过短期内并不会有这种变化。?大家大概率要为好几年的高油价做好准备?。

 ?长期来看,石油价格会一直高企的依据并不充分。?中国能源研究会常务副理事长周大地向中新财经表示,从经济运行的角度看,如果世界经济不景气,那么油价高挺也没有太多的道理。

 他认为,国际原油涨价,并不是生产供应短缺的问题。?俄罗斯的石油生产没有大幅度下降,世界石油流向只是出现了局部重组的现象。?

 国际油价会触及调价机制上限的130美元吗?在林伯强看来,目前看,成品油定价机制没有受到严格的挑战。?当国际油价达到每桶130美元后,国内成品油将如何按照机制定价,缓解百姓负担,将真正成为一项挑战。?

 根据现有国内油价定价规则,国内油价和国际油价存在联动机制,但国内油价却并不会随着国际油价的波动而?无限?上涨。

 国家发改委相关负责人曾介绍,当国际油价继续上涨,但不超过每桶130美元时,国内成品油价格按机制正常调整;如高于每桶130美元,根据《石油价格管理办法》规定,按照兼顾生产者、消费者利益,保持国民经济平稳运行的原则,采取适当财税政策保证成品油生产和供应,汽、柴油价格原则上不提或少提。

 国际油价走高对中国经济影响几何?

 国际能源价格统计网站(GlobalPetrolPrices)6月6日公布的数据显示,在全球170个国家和地区中,中国汽油价格由低到高排在第98位、柴油排在第80位,与全球平均价格非常接近。

 周大地表示,国际原油价格上涨,我国石油进口成本提高,每年要多支出数百亿美元。但在现有定价机制影响下,国内油价变动能够被控制在一定范围内,降低了国际油价变动对国民经济运行的影响。

 林伯强也认为,与欧美国家有所不同,原油涨价对我国经济并没有产生太大的影响。因为石油在我国整体能源中占比低于两成,而在欧美国家整体能源体系中,油气占比要超过六成。?中国能源主要是以煤炭为主,只要煤炭价格稳定,就不会出现太大的能源通胀问题。?

 同时,周大地建议改善?靠大宗低价产品做买卖?的贸易形式,同时综合措施,从战略上逐渐提高能源安全程度,降低或避免通胀型和突发型大宗商品涨价对经济的冲击。

 网友们纷纷直呼?太贵了?

 ?已经不敢开车出门了

 ?赶紧换电车吧?

 看似调侃

 实则是油价上涨

 冲击燃油车市场的真实反映

 

 6月14日24时油价上调请通知亲朋好友注意提前加油!

 

 综合:今日油价、、微博

传统的数据仓库展现,一般是通过建立数据仓库、设定维度、预先计算,然后向客户端展现多维分析的结果。在本系统中,则采取了与之不同的另一种数据仓库构建的思路,即在系统的数据仓库展现中尝试利用多维数据表之间的关联性来实现实时的多维分析功能。

在多维数据结构中,事实表和维度表之间是通过直接或间接的关系联系在一起的。对于某张表中某条记录的选取,可以在其他相关联表之间查询到与之相关联的数据记录,并可以对选取的数据和相关联的数据进行统计分析,得到这些数据的分布、趋势等分析结果,并且可以在设定了多维分析的维度之后,按照维度之间的层次关系对数据从各个不同的组合角度进行分析,形成实时的多维分析。

数据仓库展现的开发内容一般可以分为数据仓库的设计和多维分析的实现两部分。数据仓库的设计包括星型模式的搭建、数据抽取方式的确定、数据转换净化的实现,以及多维数据的存储等内容。多维分析的实现则包括多维分析维度的选取、度量值的定义、维度变换方式、钻取路径的定义、钻取数据显示方式的确定等内容。

本系统在开发过程中,由于原型系统带来的需求不确定性和数据齐备性等因素的制约,如何设计出良好的结构来更好地进行多维数据展现以及采取何种形式进行展现是一个重点问题。前文已经讨论过系统中数据仓库的架构模式、多维数据结构的定义等内容,讨论了系统原始数据源中存在的复杂性、数据完整性和数据有效性等方面存在的问题及解决办法。多维分析的设计包括维度之间的关联、事实数据展现的内容和形式、数据钻取等内容。

5.3.2.1 维度表关联性分析

数据源表结构中包括一张事实表和数张维度表。针对这些维度表可以设计用于多维分析的维度,分别为油品、交易市场、交易类型、价格单位和价格日期维度。维度数据和中间事实表之间存在直接关联,维度数据之间通过中间事实表而产生简洁的关联关系。从而可以在既有事实数据的基础上,对维度之间的关联关系进行可视化展现。

图5.29中显示了4个维度的内容数据,并列出了各维度中所具有的字段取值,这些字段通过事实表产生关联。在选择了Crude Oil油品之后,其他3个维度中的字段取值背景出现变化。白色背景表示在事实表中存在与Crude Oil相关联的交易市场,分别为Cushing,OK和Europe Brent,这表明事实表中存在有Crude Oil在这两个市场中的价格数据,没有在其他市场上的价格数据。

图5.29 多维分析维度列表

在默认情况下,维度列表显示了全部可能的维度取值。而在选择了某一维度之后,比如选择产品名称中的Crude Oil值,则在其他维度中高亮显示与此维度选中值通过油价数据关联起来的维度值。通过维度之间的关联显示,可以分析出源数据中隐藏的一些分布模式。在本示例中就可以看出系统中具有Crude Oil在Cushing,OK和Europe Brent两个市场的Spot Price FOB价格,而价格时间则从1986年到2008年都存在,油价的单位名称只存在Dollar per Barrel一种形式。多维分析的维度关联性分析,还允许在一次分析基础之上继续缩小选择值的范围。

5.3.2.2 维度表和事实表的关联性分析及展现

在实时多维分析中,除了可以进行维度表之间的关联性分析,也可将维度表和事实表关联起来进行分析。在此类分析中,除了可以在界面左侧展示维度表之间的关联之外,还可以在界面主体部分显示出事实表数据以及以事实表数据为基础的一些统计分析。图5.30中展现的是全球石油价格不同交易类型的对比分析,反映出对各石油品种在现货交易、期货交易等方式下的价格对比情况,分析的结果可以随左侧维度选择的变化实时变动。

图5.30 交易价格比较分析

对于事实表的展现,除了按照默认的维度顺序进行统计分析,维度之间的顺序也可以直接通过在界面中拖动维度的位置来完成维度的变换,实现多维分析旋转功能,在此不再赘述。

5.3.2.3 事实表数据钻取

多维分析另外一个很重要的内容就是数据钻取。在实时多维分析中,数据钻取的功能可以更为丰富。出于分析的目的,我们预先定义了钻取路径:

市场→价格类型→价格年份→产品名称。

这样就可以按照这样的路径对油价进行钻取分析。第一次默认按照市场名称来统计历史油价,在选择了一个市场之后就向下钻取两层,就可以得到按照价格年份来统计的历史油价。这里的钻取分析可以和维度关联性分析结合起来使用,从而更灵活地实现数据钻取(图5.31,图5.32)。

图5.31 数据钻取分析一

图5.32 数据钻取分析二

5.3.2.4 价格趋势分析

价格趋势分析可以作为价格预测的一种补充,它的功能展现过去时间的不同油品、不同交易类型及价格单位等相关信息,以此来直观表达油品的未来走向与趋势。这一块已经有了单独的模型程序模块来完成(图5.33)。

图5.33 多维价格趋势分析

通过在数据仓库展现中利用实时多维分析中的维度表关联性以及维度表和事实表之间的关联性,可以更好地拓展多维分析的功能。而对多维分析的需求确定可以考虑采取原型法来进行,利用数据仓库的实时多维展现来发现数据的内涵和数据之间的关联性,逐步帮助确定需要分析的维度、度量值、展现方式等内容,并反向影响到数据源表结构的设计。